
Institut de Genetique Humaine — CNRS

OMERO
Background Import

PROJECT OVERVIEW DOCUMENT

Abstract. Background Import is an extension
of the Open Microscopy Environment software plat-
form that will allow to import images into the
OMERO image repository without requiring exper-
imenters to be logged onto the acquisition work-
station, thus reducing costs and optimising re-
source usage of microscope facilities. This docu-
ment provides an overview of the Background Im-
port project by summarising key information about
goals and scope, requirements, solution architecture,
and project plan.

NB This document is an early draft and is subject
to change.

Volker Baecker
Andrea Falconi

Julio Mateos-Langerak

June, 2015



1

1. Introduction

1.1. Background and Context. Montpellier RIO Imaging (MRI) is a multi-site
imaging core facility with over 700 active users and more than 60 acquisition sys-
tems. Due to the sheer size and complexity of the structure, the staff is facing
an increasing number of data management and analysis challenges. To overcome
these challenges, MRI decided to adopt OMERO[1, 3] as the main infrastructure
for the storage, management, and analysis of image data. There are also plans to
participate in the development of OMERO to better serve the specific needs of the
local imaging community.

OMERO software has been deployed to most acquisition workstations within
MRI so that after images have been produced by a microscope, experimenters
can import them directly from an acquisition workstation into the OMERO image
repository. Of course, they still have an option to copy the image data to some other
storage facility of their own choice. Either way, data will have to be transferred out
of the workstation as acquired images are periodically deleted from local storage
to make room for new ones. Whichever way experimenters choose to transfer the
data currently requires them to be logged on the acquisition workstation until the
image data have been fully transferred out of the workstation into the designated
storage location.

This arrangement has the following disadvantages:

2 Lessened microscope availability. A microscope is not available to other
users until the experimenter has logged out of the acquisition workstation
so the next user will have to wait until the transfer is finished.

2 Additional costs. Because experimenters are billed for the amount of time
they are logged on an acquisition workstation, the time it takes to transfer
the data is billed too.

Note that these issues are not inherent to the OMERO import workflow or, more
generally, to the data transfer mechanism per se, but rather are caused by the fact
that the data transfer is tied to a user session.

1.2. Proposed Solution. This project aims to remove the above limitations. The
goals are cost and resource usage optimisation within microscope facilities as well
as demonstrating that this can easily be accomplished using OMERO technology.

To this end, we propose an extension to the Open Microscopy Environment
software platform[4]. The idea is to develop a set of software components and
integrate them into the existing OMERO platform so to allow experimenters to
log out just after triggering an image import into the OMERO repository. The
import will then run autonomously to completion, thus making the microscope
immediately available to the next user and avoiding billing for the data transfer.



2

1.3. Document Outline. The reminder of this document provides information
about key project areas at a level of detail suitable to support initial project execu-
tion. More in-depth and refined documentation will be provided during the course
of the project as the need arises.

The next section is devoted to the software architecture. In it, requirements
are stated and key solution aspects, from design to testing to deployment, are
described by means of interlocking views and their relation to requirements. This
information forms the basis for scoping and planning which are discussed in the
following section, the Project Plan. Then, in the Methodology section, we consider
software process issues, development activities and tools. The final sections explore
possible avenues for future work and collect some initial considerations about the
project.

2. Software Architecture

Each of the coming subsections provides an architectural view[8, 5], addressing
a specific facet of the Background Import; taken together, these views convey just
enough information to describe the architecture of the proposed solution at a very-
high level.1 The reader is assumed to be familiar with the OMERO platform and
its implementation at MRI—deployment, operation, network topology, etc.

2.1. Requirements. As already discussed in the introduction, the key requirement
is to untie the image import from the login session. Whatever the mechanism to
achieve this, the transfer quality, in terms of reliability and performance, should not
degrade. Resource usage (CPU, I/O, etc.) on the acquisition workstation should
not be any higher than that of the OMERO importer and microscope operation
should not be affected. Additionally, robust failure handling and recovering has
to be in place so that users and system administrators are notified of failures and
failed imports can be retried or resumed as appropriate; successful imports have to
be notified to the users who requested them. Data integrity must be preserved and
it should not be possible to remove a file while it is being imported.

2.2. Functional View. The idea is to have a new background process, the Import
Proxy, that can run an image import on behalf of OMERO clients; this process
would run outside of any user session so to untie the image data transfer from login
sessions.

In detail, the Import Proxy is a Java ICE servant exposing an asynchronous call
that accepts the exact same inputs as those the OMERO client currently passes
to the OMERO server to perform an import (object hierarchy, annotations, etc.)
except for the image data which are instead replaced by a pointer to the actual
image file. The Import Proxy runs the import in the exact same way as the OMERO
Java client does presently—i.e. save inputs to OMERO server, parse and transfer
image file. The proxy process needs to have access to the files to import which are
therefore expected to be available either from the local file system, if the client and

1A more detailed software architecture document may be provided during the course of the

project if the need for it arises.



3

the proxy run on the same machine, or via a network share, if the proxy is on a
different machine. Files will be locked for the entire duration of the import in order
to prevent users from accidentally deleting them before import completion; further
data integrity is already enforced by the current OMERO import functionality—
e.g. SHA checksums. Upon successful completion, the Import Proxy sends an
email notification to the user who requested the import; if the import fails, both
the user and system administrator are notified. A write-ahead log provides support
for recovering from failures so that broken imports may be fixed, e.g. by retrying
them if at all possible or by requesting the system administrator’s intervention.

Note that because the Import Proxy runs an import in the exact same way as
the current OMERO client does, transfer quality and resource usage should be the
same as what they presently are (i.e. no degradation) if the proxy and the client
both run on the same host.

In order to be able to use the Import Proxy, the OMERO Java client is extended
with a new Import Plugin. This plugin is configurable so that Background Im-
port functionality will not be available for sites that do not require it—this is the
default configuration setting. The plugin provides a new button that users, after
going through the usual import workflow, can press to trigger a background import
in which case the plugin calls the Importer Proxy and returns immediately; the
user can then quit the OMERO client and log out while the import is run in the
background.

2.3. Development. The Background Import will be part of the OMERO Java
client (Insight) project. All the Background Import code will be developed in
the OMERO Java client code base. Two separate modules will be added: one
for the Import Proxy and one for the Import Plugin. Build and configuration
management are already in place for the entire OMERO Java client code base, so
the current infrastructure will be adopted wholesale and existing coding standards
will be adhered to. Automated testing is available too, so unit and integration tests
will be developed and added to the current automated test suite. The Background
Import byte-code is also packaged inside the existing OMERO Java client install
bundle.

Note that sharing of project infrastructure and deployment is advantageous in
terms of speed of delivery but is not necessarily the best arrangement in terms
of release management and deployment dependencies. So this may change in the
future and the Background Import could become a separate OMERO project.

2.4. Deployment. In our deployment configuration, the OMERO Java client is
installed on each acquisition workstation. The client is configured to use the Import
Proxy which runs as a service on the same workstation. The service is set up using a
control script included in the client install bundle; the script starts (stops/restarts)
a Java process to run the Import Proxy code which is also part of the same client
bundle. Thus, only one installation is needed to run both the client and the proxy.
However, whereas the client is available to all workstation users, the proxy is a single
background process running on the workstation to service all users. The proxy uses
whichever OMERO server the client is configured to use. Run-time, hardware, and



4

network requirements for our deployment configuration are the same as those of a
standard OMERO Java client deployment.

2.5. Operation. The installation procedure entails installing an OMERO Java
client on each acquisition workstation (as currently done), configuring it to use
the Import Proxy, and setting up the Import Proxy to run as a service using the
provided control script. Additionally, the account under which the proxy service
runs needs to have enough permissions to read any image produced by the micro-
scope attached to the workstation. Upgrade procedures for the Background Import
components are exactly the same as for an OMERO Java client deployment.

The proxy service should be monitored (e.g. added to the list of processes
monitored by system administrators) to ensure its availability. If the service is
down, any user (of that workstation) trying to import an image would receive an
error and would not be able to import. Even though this can be remedied in
minutes just by manually restarting the service, it is best to try and prevent errors
by automated monitoring and recovery in order to raise the quality of service. Any
failure encountered by the Import Proxy while running an import will be emailed
to a configured administrator mailbox which system administrators should make
sure to have access to.

User training and documentation will be provided. For support and assistance,
users can contact system administrators.

3. Project Plan

Below is a high-level project plan. The plan is broken down into subsequent
phases (loosely following the Unified Process, see e.g. [6]) that will be executed
sequentially; within each phase there is a summary of the tasks to carry out to
reach the completion of that phase. Tasks within each phase may be carried out
concurrently as needed. Milestones track project progress by specifying what is the
expected outcome at a point in time and how long it is expected to take—i.e. a
time estimate for the completion of all the tasks leading up to that milestone.2

3.1. Inception.

Goals. Initiate project and prepare ground for development.

Tasks. Establish vision, scope and justification for project. Gather key require-
ments and identify risks. Familiarise with OMERO platform. Build development,
test, and server virtual machines.

2Each task was estimated separately using PERT three-point estimation: Call b, w, l the best,
worst, likely task completion time, respectively; we took the expected completion time t to be:

t = b+4l+w
6

. Then we summed up expected completion times for the tasks leading up to that

milestone.



5

Milestone (M1). All inception tasks completed. Virtual machines ready for devel-
opment cycles. Project approved by CNRS steering committee. Expected Comple-
tion Time: 15 days.

3.2. Elaboration.

Goals. Establish and validate solution architecture.

Tasks. Analyse requirements. Study candidate solutions. Attend OMERO confer-
ence to discuss plans and development options. Select solution architecture and
produce project plan. Write project overview document (only draft needed). Fa-
miliarise with ISO certification procedure and Redmine project management.

Milestone (M2). All elaboration tasks completed. Project managed in Redmine
and ready to be audited. Expected Completion Time: 24 days.

3.3. Construction.

Goals. Implement system features.

Tasks. Develop initial prototype: Import Proxy ICE interface; ICE servant and
client; Import Plugin button and asynchronous call to the proxy. Develop unit and
integration tests. Have small group of end users test and evaluate product; steer
further development according to received feedback.

Milestone (M3). Prototype is stable and other system features can be added. Ex-
pected Completion Time: 16 days.

Tasks. Evolve prototype into deliverable product by implementing: write-ahead
log, locking, notifications, configuration, server control interface, control script.
Develop unit and integration tests. Write developer documentation. Build pre-
production environment to deploy and test deliverable. End to end testing. Load
testing.

Milestone (M4). All construction tasks completed. All system features imple-
mented. System fully tested and ready for deployment. Expected Completion Time:
27 days.

3.4. Transition.

Goals. Deploy system to production environment. Refine product to incorporate
any feedback received from end users.



6

Tasks. Conduct pilot deployment using small group of end users to test and eval-
uate product in production environment: install OMERO Java client on selected
machines, set up Import Proxy service, assign permissions, configure admin mail-
box. Monitor running system and fix any issues. Collect feedback from end users
and refine product as needed. Prepare end-user training materials. Write end-user
documentation.

Milestone (M5). System is running smoothly in a controlled production environ-
ment. Any issues have been fixed and end-user feedback incorporated into product.
System is ready for deployment to all MRI target machines. Expected Completion
Time: 19 days.

Tasks. Deploy system to all MRI target machines. Monitor deployment and fix any
issues.

Milestone (M6). All transition tasks completed. System is running smoothly in
production environment. Project ends and product enters maintenance phase. Ex-
pected Completion Time: 5 days.

4. Methodology

We are going to adopt the Kanban method (see e.g. [2]) for software develop-
ment as this is the approach the OMERO team has embraced. The project will
be managed through the Redmine[7] project management tool. Source code and
documentation will be kept in our GitHub repository at:

2 https://github.com/c0c0n3/openmicroscopy

The development tool chain is the same as that used by OMERO core develop-
ers.

5. Future Work

The Background Import project is, at this stage, an MRI custom extension to the
OMERO platform and, as such, not officially endorsed by OME. However, our use
cases may turn out to be fairly common at other facilities worldwide, in which case
Background Import functionality could be integrated into mainstream OMERO.
We will engage with the OMERO core developers to discuss integration. This may
require some changes to the Background Import code, for example, factoring it
out from the OMERO Java client into its own OMERO project. Also, new features
could easily be added to make it more flexible and, hence, usable in a wider array of
scenarios. Specifically, the Import Proxy could operate in “pull” mode too: images
could be fetched from a remote workstation; thus several acquisition workstations
could share the same Import Proxy service. We estimate this to require roughly
between one and two months of development.

https://github.com/c0c0n3/openmicroscopy


7

More generally, one could envision a system in which end users need not worry
or be aware of where images are physically stored or how they can be accessed. At
acquisition time, an user would select where the image belongs in a given logical
hierarchical structure of their choice—a virtual file system; under the hood the
system would stream the image data to physical cloud storage. (Note that physical
storage and logical hierarchical structure would be independent.) The cloud soft-
ware would then let the user access the image from any cloud-enabled device, using
the same logical hierarchical structure. OMERO would be integrated in the cloud
to enable image viewing, management, and analysis which could now be done from
any device connected to the cloud via a web browser. We will explore this avenue
further if it is of any interest to MRI.

6. Conclusions

Once implemented, the Background Import will increase availability of micro-
scopes, as users can log out just after image acquisition, and reduce operating costs,
as users will not have to pay for image data transfers. Thus we see how OMERO
technology can help optimise cost and resource usage within a microscope facility
by providing robust, feature-rich management of microscopy data. However, the
benefits of adopting OMERO go far beyond: we see it as playing an important
role in facilitating scientific discovery. In fact, image data are ultimately acquired
to extract and derive information that forms the basis for scientific investigation.
As data volumes grow and data formats proliferate, extracting information soon
becomes extremely difficult if the data are not accessible through a uniform, ef-
ficient interface which is exactly what OMERO provides, dramatically improving
the ability to acquire knowledge form the data.

References

[1] Chris Allan, Jean-Marie Burel, Josh Moore, Colin Blackburn, Melissa Linkert, Scott Loynton,

Donald MacDonald, William J Moore, Carlos Neves, Andrew Patterson, et al. Omero: flexible,

model-driven data management for experimental biology. Nature methods, 9(3):245–253, 2012.
[2] David J Anderson. Kanban - Successful Evolutionary Change for your Technology Business.

Blue Hole Press, 2010.

[3] Open Microscopy Environment. Omero web site: www.openmicroscopy.org/site/products/omero.
[4] Open Microscopy Environment. Web site: www.openmicroscopy.org.
[5] PB Kruchten. The 4+ 1 View Model of architecture. Software, IEEE, 12(6):42–50, 1995.
[6] Philippe Kruchten. The rational unified process: an introduction. Addison-Wesley Profes-

sional, 2004.

[7] Redmine Project. Redmine web site: www.redmine.org.
[8] D. Soni, R.L. Nord, and C. Hofmeister. Software architecture in industrial applications. In

Proceedings of the 17th international conference on Software engineering, pages 196–207. ACM
New York, NY, USA, 1995.


	1. Introduction
	1.1. Background and Context
	1.2. Proposed Solution
	1.3. Document Outline

	2. Software Architecture
	2.1. Requirements
	2.2. Functional View
	2.3. Development
	2.4. Deployment
	2.5. Operation

	3. Project Plan
	3.1. Inception
	3.2. Elaboration
	3.3. Construction
	3.4. Transition

	4. Methodology
	5. Future Work
	6. Conclusions
	References

